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SUMMARY

The objective of tis dissertationis to develop electrical modeling and-co
simulation methodologies for signal and power integrity of package and board
applications. Thalissertationncludes 1) the application of the finite element method to
the optimization for decoupling capacitor s¢ies and placement on a power delivery
network (PDN), 2) the development & PDN modeling method effective for
multidimensionaland multilayer geometrie8) the analysis and modeling of return path
discontinuities (RPDs)and 4) the implementation of tladsorbing boundary condition
for PDN modeling

The optimizationtechniquefor selection and placement of decoupling capacitors
usesagenetic algorithm (GA) and the multilayer finite element method (MFEEMPDN
modeling method using FEMIhe GA is custoniezed for the decouplingproblem to
enhance the convergence speed of the optimization. The mathematical modifications
necessary for the incorporation of the capacitor model into MFEN&opresented

The main contribution of this dissertation is the depment of anew modeling
method themultilayer triangular element method (MTEMpr power/grounglanes of a
PDN. MTEM creates a surface megsheach plangair using dual graphs non-uniform
triangular mesh(Delaunay triangulation)and its orthogonal counterpart (Voronoi
diagram) to whichelectromagnetiand equivalent circuitonceptsare appliedThe non
uniform triangulation is especially efficient for discretizing multidimensional and
irregular geometries which are commonpisickage and boaf@DNs. Moreover, MTEM

generates a sparse, banded, and symmetric system matrix, amadtesefficient
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computations For a given plangair, MTEM extracts an equivalent circuit that is
consistent with the physidsasedolanarcircuit model of a plangair. This, thevalues of

the lumped elementsan besimply calculatedirom the physicalparameterssuch as

material properties and mesh geometaksach unicell. Consequentlythe modeling of

MTEM is flexible and asy to modifyfor furtherextensionssuch ashe incorporation of
external circuits, e.g. decoupling capacitors and vertical interconnects.

Power and ground planes provide paths for the return currengradl draces.
Typically, planes have discontinuities such as via holes, plane cutouts, anolaspdis
that disturb flow of signal return currents. At the discontinuity, return currents have to
detour or switch to different layergausing signal and power integrity problems.
Therefore, a separate analysis of signal interconnects will negleagtiiecant coupling
with a PDN, and the resultill not bereliable. In this dissertation, the -sanulation of
the signal and power integrity is presented focusing on the modelRBD$§created by
split planes, apertures, and vias.

Plane resonance isne of the main sources of power integrity problems in
package and board PDNs. A number of techniques have been developed and published in
literature to reduce or prevent the resonance of a fglameOne of the technigs is to
surround plangair edgeswith absorbing material that effectively dasihe outgoing
parallelplate wave and minimizes the reflection. To model b@bavior the boundary
condition of MTEM needs to be changed from ddginal form, the opeftircuit
boundary condition. In this dissertation, the applicationttaf 1°' order absorbing

boundary condition to MTEM is presented.
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CHAPTER 1

INTRODUCTION

1.1 Background and Motivation

The integrationof electronic devices into single system continues asew concepts of
electronic packaging arbeing introduced. SysteAn-package (SiP) and systewn-

package (SoPiypify the integration of multiple system functions into a singgekage
providing all the needed systdevel functiors [1]. As a number of dissimilar
components are integratéala single platfornrequiringdiversepower supply strategies

the design of @ower delivery network (PDNyecomes morehallenging

1.1.1 Challenges in Electrical Design of Package Systems

The mainfunction of an electronicpackage ighe distribution of signal and power tthe
ICs. When multiple ICs draw electrical current from power supply, current flowing
through a PDN causesvoltage drop and fluctuationsbecause of resistances and
inductancesesiding in the power raillo reduce the pattmpedancepower and ground
nets are designed as conductor planes

Typical PDNscomprisea stackup of alternating layers of power and ground
planesseparated by dielectric substratdhis configurationcan reducethe package
inductance and also isolate differentlevels of supply voltagesHowever, planes
separated by a thin dielectric create a cavity that resonatesatancdrequenciesAt
antiresonance frequencies, the cavity created abyplanepair exhibits maximum

impedance When multiple drivers simultaneously draw povegrthe rate of the anti

1



resonance frequencthe large impedance of the PDN resultsairge fluctuationsin the
supply wltage This unwanted noise is known asnultaneouswitching noise (SSN).
The large voltage fluctuations impact on the performance of a microprogesiser
insufficient supply voltage slows down, and the excessive supply voltage breaks down
the microproessor([2]. Therefore,the PDN design emphasizes ensuring thatthe
voltage fluctuations do not exceed the allowed threshold of a system.
Sincediversecomponents assembleda packagelemand various supply voltages,
power/ground planeare split for DC isolation. Planes also contain apertures lamids
for embedded components as@ynal interconnest These discontinuities in a PDN
provide a pathfor the coupling of SSN throughout the systemlhe coupledSSN
traverses the cavitgreatedby a planepair as a radial waveandis refleced from the
plane edgesThe reflected wavecreats multiple resonanceswhich result inthe
fluctuation of supply voltageon the power/gromd planes [3] [4]. The noise in
power/ground planes can couple back to signal intercontiecisgh the path created by
PDN discontinuitiesand deteriorate the quality of signdbince ecessive voltage
fluctuations causéoth signaland powerintegrity (SI/PI) problems,the generation of
SSN needs the carefully analyzedn the design of a semiconductor systérhe SI/PI

problems in a package system aoaceptually described Fgurel.1.
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Figure 1.1. SSN generation andnfluencesin a package (Reproduced from[5].)

To reduce the fluctuation of the supply voltage, the path impedance where the SSN
current flows needs to be minimized. Hende purpose othe PDN design is to ensure
that the impedanceeenat the IC terminals meet the target impedaaceossthe
operating frequencrange To mitigate excessive fluctuations of the supply voltage
decoupling capacitors can Ipdacedbetween the poweand groundpadsof nearby I/O
circuits. However, since the decoupling capacitoesome inductive at high frequencies,
placing a number of capacitors withoutvall-organizedstrategy will fail to reduce the
PDN impedanceMoreover, manually selecting an appropriateount and right values
of capacitors and placing them on optimal locations are complicated and time consuming

processesThis tedious task becomes even more challenging as the level of the target



impedance of semiconductor systems is continuotaling, led by the decrease of

supply voltage and increase of system current.

1.1.2 Challenges in Electrical Modeling of Package Systems

The impedance profile of a PDéan beobtained bysimulationsthat capturehe
electromagnetic behaviors of tlRDN. PDNs can be simply modeleas a singlenode
system assuming the voltage variations occur simultaneously across the [6anes
However, the simple moddhils to take into accounthe distributedbehaviorof the
planes athigh frequencies PDN modelingalso needs t@ccuratelycapturecomplex
geometries such asa stackup of multiple planesgaps and holesin planes,and
decoupling capacitors

The computational efficiency of RDN modeling and simulatiois a critical factor
that determineghe efficiency ofa design procesd-igure 1.2 showsa flow chart ofthe
typical designprocessfor packagesand PCBsThe process involves SI/PIl simulations
and analyss to ensureif the design at each step complies with the design raies
specifications The original design is modified based on the simulation and analysis
results, and this process persists until the simulation results satisfedbhgements
Hence, a time-consuming simulatiorcan be a bottleneck thatslows downthe entire

design processnd inevitably results along timeto-market cycle
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Figure 1.2. A part of the typical designprocessof electronic packages(Modified from [7]
and|[8].)

1.2 Contribution s

The major contributions of the dissertatiane following
1) Extension ofthe multilayer finite element methdWFEM) for the optimization
of decoupling capacitor selection and placement using a customized genetic

algorithm.



2) Development of a new PDNnodelingmethod,the multilayer triangular element
method (MTEM), especially effective for irregular and multidiméensl
structures, based on the physibssed equivalent circuit.

3) Modeling ofthe return path discontinuities created by apexudog a signal and
powerintegrity co-simulation.

4) Application of the absorbing boundary condition to MTEM.

1.3 Organization of the Dissertation

The rest of thidissertations organized as followdn CHAPTER 2 the problers that

will be addressedn this dissertatiorare defined, and the prior arts iditerature are
reviewed In CHAPTER 3 the automation technique of finding optimal solutions of
decoupling capacitor values and locations using the multilayer finite element method
(MFEM) is presentedThe development of a novehodeling method for a power/ground
plane structurethe multilayer triangular element method (MTEMN§ introduced in
CHAPTER 4 In CHAPTER 5 port modeling is presented, and thedeling of return

path discontinuities for theo-simulation of signal and powentegrity is provided in
CHAPTER 6 In CHAPTER 7 the absorbing boundargonditionis presented focusing

on its implementatiom MTEM. Finally, summary and conclusionstbis dissertatioms

presented iICHAPTER 8



CHAPTER 2

ORIGIN AND HISTORY O F THE PROBLEM

2.1 PDN Modeling Methods

Typical power delivery networksPDNs) arecomposed ofmetal planestacked on top of
each other separated by less insulatorsSinceeach layeformedby metal planes with
the lowloss dielectriccan act as a cavitgthe PDNsare highly resonant structuse To
completely characterize such structutérough timedomain analysisa tremendous
amount oftime is required for a sinfation. Hencethe frequencydomainanalysis of
package PDHlis more beneficial

Electromagnetic field solvers that can emuliegjuencyresponses of package
PDNs can be classified as two folds: integral equation and differential equation .solvers
Integral equation solvers includiee method of moments (MoM) artie partial element
equivalent circuit (PEEC) method. Since integrgliationsolvers require a discretization
of only the sources of electromagnetic field, 8iee ofthe resultant linearsystemis
small. Howeverthe systemmatrix generated by integral equation solvers is deasd
the density increases according to the square of the problemreséting in high
computational costs. On the other hand, differential equation solvers astite finite
element method (FEMandthe finite difference method (FDM)generate a banded and
sparse systembecauseelements areonly locally connected.However, differential
equation solvers that create volumetric mesbesate sparse butimpracticdly large

systens for largesized problens.



A package PDN consisting of planes separated by a dielectric is a planar structure.
Since he thickness of a dielectric is electrically smahle field variation along the
vertical direction of a power/groundglanepair can be neglectedl herefore, a pair of
power/ground planes can be modessdh planar circui{9], and gveral methods based

on the planar circuit concepaivebeendeveloped

2.1.1 The Cavity Resonator Model Using SegmentatioMethod

The cavity resonator mod@krovides amanalytic solutionin the form of an impedance
matrix. If a rectangular plafgair with metal planes of dimensions @, dielectric
thicknessd, permittivity and permeabilityf Uand e, respectively,and ports located at

whd and who can be calculated as

~ ~ ~ ~

s ’ Q0 —————Qohwhwhd h 1
W ] Q o WA o hohwoho D
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WEH——1 Qew— wet+—i Qew— )
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Dé+——i QeEw— Wé+=—i Qee— h
W q&) w W
ti, tx, t,i, andty, are the size of the pork is the complexwavenumber and’Q
— — [10] [11.

Possible geometries thatet cavity resonator model cdrandleare limited to
simple structures suchas a square, a rectangle, or an equilateral triangleavercome

this limit, the structurés segmented into sectiotisatcan beseparatelsimulatedby the
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cavity model,andeach segment is interconnecegdcorrespondingirtual ports densely
created(distance less thaa’10) at thesegmenboundarie [12] [13] [14]. However if a
given geometry is extremely irregular, the method cee#&® many virtual ports,
consequentlythe model becomes too complicatétbreover,the double summation in
Equation(l) up to a large number of modean slow down the computatioAlthough
acceleration techniquepresented in[13] and [15] can improve the computational

efficiency, the approximationg@ssociated with the techniqueslucemodeling accuracy

2.1.2 Modeling Methods Based orDiscretization

Sincethe electromagnetibehaviorof a planepair can be assumed to be tdionensional
(2D), theradial wave propagating ia planepair can be expressed wigh2D Helmholtz
equation
Qo O VR 3)

where representghe transverse_aplace operator parallel to the planar structug®s,
the wavenumber) the voltage] the angular frequency, the permeability of the
dielectric,Qthe distance between the planes, artie currentdensity at the excitation
port[16]. Plane boundaries are assumed to beagneticwall, or an open circuitwvhich
can bedescribedy the Neumann boundary condition.

The governing equation, EquatigB), can be solved by applying the finite
difference(FDM) or the finite elemenmethods(FEM), which will be presented in the

following sections.



2.1.2.1 TransmissiorMatrix Method (TMM)

The transmigsn matrix method (TMM)[17] is a 2D modeling method that solves the
equivalent circuit of a planpair analyzed as a planar circuit. A plgar is segmented

into square unitells, which are converted to the transmission matrices. By solving the
cascaded transmission matrices, TMM can solve the equivalent circuit with less
computationakffort thanthat required foa general SPICE solver. However, TMM is not
applicable for multiple planpairs with a gap or an aperture, sincedascadingroperty

prevents the inclusion of coupling elements between neighborind tgjlls

2.1.2.2 TheFinite Difference Method (FDM)

By applying the centtalifference method, the transverse Laplace operator in Equ&}ion
is approximated as

) 05 0 5 Of 0 5 TO0ph.
N Of Q I (4)

where'Qis the central distance between the neighboring celigl6 j is the voltage at

node "GQ Substituting Equatior4) into Equation(3) leads to

O 6 5 O e
Q ® @ ©)

where6 —,0 ‘ 'QandQs the current source injectéato the cell SinceEquation

(5) can berepresentedby the equvalent circuit as shown ikigure2.1, a standard cirgu
solver based on the modified nodal analysis appreactbe usedor the computation
However, a direct solution of a matrix form@Y @ using linear equations is

computationally moreébeneficial because the resultant systematrix, o, is sparse and
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bandedIf a nested dissection method is useBM can solve a system with unknowns

ind 0 8 timeandd O & ¢ WH memory[19].

Figure 2.1. Cell-centered discretization of theLaplace operator and the equivalent circuit of
FDM.
Including the computational efficiency, FDM has advantagesth#f ease of
implementationthe capability ofan equivalent circuitepresentationand the application
of wide range of shapedHowever, tis method discretizes surfaces with a square or a
rectangular grid, whickend tocreatetoo many unit cell$or a multdimensional structure
that is common ithe package PDNFurthemore, if a structure is geometrically irregular,

it is difficult to effectivelydiscretize the structure with a square/rectangular mesh.
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2.1.2.3 TheFinite Element MethodFEM)

FEM is another approadat appliesEquation(3) to each ofthe discretized segments
and sole for the potentialpy. For 2D problems, these segments are usually in the form of
triangles or rectangles. If20], FEM applied toa power/ground plane structure is

presented using a namiform triangular meshThe weak form of Equatior3) is

expresed as

% D% 1 ' %% Q ‘U@ QwQdmh (6)
LI

with linear pyramid basis functions, whegeis the problem domajrand /7, and 7, are
the basisand test unctions, respectively. After some derivations, the solution of
Equation (6) can be obtained by solving linear equations

v 0 TY O )

wherethe entries ofr and- are

U o Y h ®)
gam |

kY (9)
YO s
pco

From the mathematical properties of EquadiqB) and (9), Equation (6) can be

represented by an equivalent cirausing lumped elementgs shown irFigure2.2.
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Figure 2.2. Equivalent circuit representation of a planepair using FEM (lower plane is not
shown).

FEM can utilize a nomniform triangularmesh scheme, which can effectively
discretize multidimensional and extremely irregular geometriesaddition, FEM
generatesa sparsesystem which promises an efficient computatiddn the other hand,
one of the disadvantages of FEM lies in thificulty of implementation. Another
disadvantage arises from the equivalent circuit representation for a power/ground plane
pair. The values of the lumped elemeriEguatiors (8) and(9), are derived from not only
physicalproperties of a simplexut also mathematicdbrmulationsof FEM. Thus, the
further extension of the molbesuch asthe inclusion of external circuit modelss

complicatedand not physically intuitive.

2.1.3 Overview of Computational ElectromagneticModeling Methods

Various electromagnetic modeling methods are available as commercial software as well
as describedin the literature Each modeling method has its own strengml

weaknessesver another.
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Table 1 summarizesand compares mesh and computational efficiency of variou
computational electromagneticmodeling methods. The selected methods include
differentialequations, analytical solutions, and planar circuit methdds. comparison

of the computational efficiency is based on the size and density of the system matrix.
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Table 1. Comparison of computationalelectromagneticmodeling methods.

Category Method Discretization | Mesh Efficiency Compqtatlonal
Efficiency
FDM
Not good
(sparse but large
FEM system)
3D Fulk Tetrahedron or Inefficient for
Wave Hexahedron planar structures
Not good
MoM (small but dense
system)
Cavity ) ) Good for solid
Resonator rectangle/triangle
Planar
Circuit
Model Not good for
_ Segmentatior irregular Not good for irregular
(Analytical l?/lethod Virtual Ports geometries or multi-dimensional
Solution) (creating too many structures
virtual ports)
Inefficient for
T™MM Rectangle irregular Good
geometries
Planar _
Circuit Not good for multi
Model MFDM Rectangle dimensional Good
structures
(Numerical
Solution)
MFEM Triangle Good Good
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2.2 Extension toMultiple Plane-Pairs

The differential equation method&DM and FEM, are expressed as an equivalent circuit
using only passive lumped elements and independent current sGlwoeedenda single
plain-pair to multipleplanepairs, theequivalent circuiof each plangair can be stacked
on top of each otheHowever,the simple interconnectionf equivalent circuitsill fail

to take into accourdifferernt referencs of each plangair, and the resultant modeill

be completely incorrectTherefore, the reference of each plgag must be shifted to a
global referencef multiple planepairs and the shift oareference can be realizeding
indefiniteadmittance matces[21].

The multilayer finite difference method (MFDMR2] and the multilayer finite
element method (MFEM)20Q] utilize the technique of the indefinite admittance matrix to
extenda single plangair tomultiple planepairs.This approach, shifting reference nodes,
can be applied to any modeling scheme that can be expressed as an equivalent circuit
composed of onlpassive elements and independent sources

Consider the unit cell model shown Figure 2.3 (a), which can be decomposed
into two planepairsas shownn Figure 2.3 (b). Theinductance and capacitance models
are shown inFigure 2.3 (b) and(c). L;» andLs4 are per unit cell inductances for each
planepair that can be obtained from Equati@4). Assuming the plane 3 is tleystem
reference the indefinite admittance matrices for the top and bottom gdaire can be

derived as follows:

x (10

£ e g€

0000
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O ® ® W Fl (11
where @ —— and @ ——8Similarly, an admittance matrix for capacitance
betweerplaness obtained as follows:

0 @ T @ T W
0 T ® T @ W
0 @ T ® ® T W h (12
0 1 @ 1 O O

where ® Q6 and ® 06 8 Loss terms are omitted in both models for
simplification. Finally, superimposinall the indefinite admittance matrices, Equasion

(10), (11), and (12), completes the total admittance matrix for the given thagered

structure:
O ® () O ()
(85 ]
11 o - - « “ “ Il
T W (O O O -
I 8 (13
o W W W W W O W I
] 1
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Figure 2.3. (a) Crosssection of a threelayer structure. The equivalent(b) inductance and (c)
capacitancemodel.

2.3 Incorporation of Signal Interconnectsinto the PDN

In a package angrinted circuitboard (PCB), the signal interconnectssuchas copper
traces and vias, linllrivers and receiver circuifdacedon the PDN Metal danesin the
PDN provide the paths for theeturn current of the signal interconnects Power and
ground planes typically contain many discontinuities such as plareuts) split planes,
and via antpadsas shown irFigure2.4 (a). On those metal planes with discontinuities
signal traces are placed as shownFigure 2.4 (b). If a currentreturn pathof a signal
transmission lings discontinuousthe field distributionchangesat the discontinuity and

mode conversionccurs whichresulsin the distortion of the signaMoreover,the mode

18



conversioncan excitethe cavity created by thgower and ground planesdleads toa
planeresonancecausingluctuation of supply voltageA discontinuity ofthis type along

asignalinterconnect is called as return path discontinuity (RPD).

(a) (b)

Figure 2.4. Layout of (a) power and ground planes and (b) signal interconnectéCourtesy
of class notes for Purdue University ECE477, Spring 2009.)

The electrical behavior at the RPDs can be explained using an example
microstrip line placed above a slotted power plaseshown inFigure 2.5 (a). At the
discontinuity, return current switches layer from power to ground plane and vice versa to
conplete the closed current loogCurrent jumps from one layer to another as
displacement currerihat is caused by the stray capacitabhedveen the layerddence,
the propagation mode of the microstrip line at the discontinuity changes from its original
form to anotherleading tathe change ofharacteristic impedan@nd effective dielectric

constant. In addition, the displacement currextites the plangair created by power
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and ground planesind may resultin a plane resonancthat causes the fluctuation of
supply powerThe plane resonance can also deterioratsiiveal transmission,rsce the
high impedanceof the PDNat antiresonant frequenciesnpedesthe flow of return
current A similar effect is observed at the RPD ated by a via anjpad (clearance hole)
as shown inFigure 2.5 (b). Therefore in a package oPCB system,the electrical
behaviors of thePDN and thesignal interconnects are closelgoupled and their

interactions must bmcludedin simulations

Figure 2.5. Current loops created at thereturn path discontinuities created by(a) slot and
(b) via transition.

One of the method to co-simulae the PDN and thesignal interconnects is to
model each domain separately andntegrate using a modal decomposition technjque
which was exploited in margrticles or publicationf4] [5] [23] [24] [25]. The PDN can
be modeledisingany analysis methotthat can provide the impedance profile of a given
PDN, andthe signalinterconnects can beharacterizedy transmission line parameters,

such ascharacteristiampedance, effective dielectric constant, and eleztricallength.
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